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Predictability of quasi-geostrophic turbulence
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A method is developed for statistical prediction of turbulent geophysical flows that
is more efficient than ensemble integrations. We consider the evolution of low-order
moments for inviscid quasi-geostrophic turbulence. Guided by statistical mechanics,
equations are developed for predicting the mean and the variance about the mean
as functions of position and time. These equations are consistent with the exact
moment equations and contain irreversible (entropy producing) fluxes that must be
specified in terms of known moments. Using simple choices for these dependences, the
resulting scheme, involving just two spatial fields, typically outperforms 100-realization
ensembles.

1. Introduction
Predictability of atmospheric and oceanic motions is fundamentally limited by

a tendency for small differences in initial conditions to amplify: because measured
initial conditions inevitably contain errors, prediction errors become large within a
finite time. This is so even for prediction models that describe all relevant physical
processes perfectly.

It is therefore vital that predictions include an indication of uncertainty. However,
predictions based upon a single realization of initial conditions provide no such infor-
mation. There are at least two means of obtaining estimates of forecast uncertainty.
The first is to consider an ensemble of M sets of initial conditions, each compatible
with observations, and to evolve each independently. Forecast uncertainty then can
be estimated straightforwardly from ensemble statistics (e.g. Leith 1974; Stephenson
& Doblas-Reyes 2000). An obvious drawback to this approach is its computational
burden: many realizations are needed to obtain reliable statistics, despite advances
in generating optimal initial conditions for ensembles (e.g. Houtekamer & Derome
1995).

A second means of obtaining forecast uncertainty is to consider equations for the
evolving statistics themselves, an obvious choice for which is the low-order moments
of the probability density function, or p.d.f. Because equations for moments of order
n contain moments of order n + 1, this approach leads to a closure problem. Like
ensemble calculations, closure approximations such as the stochastic dynamics of
Epstein (1969) and Fleming (1971) suffer high computational burden: for systems
having N degrees of freedom, third-order moment closures require solving O(N2)
equations and fourth-order closures O(N3) equations, each containing many terms.

The present paper seeks to develop more tractable means for statistical forecasting
of first and second moments. Instead of applying a formal moment closure, we
draw upon basic considerations from non-equilibrium statistical mechanics to obtain
evolution equations for the mean and single-point variance field in terms of reversible
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and irreversible (or entropy producing) fluxes. Entropy measures total uncertainty
implied by the p.d.f. (e.g. Khinchin 1949; Shannon & Weaver 1949; Salmon 1998,
Chap. 5), and is thus a natural measure of the information content of a probabilistic
forecast. Carnevale & Holloway (1982) showed that under homogeneous inviscid
dynamics, the entropy of pairs of realizations monotonically increases, meaning that
the information content of forecasts from imperfect initial conditions monotonically
decreases. The scheme developed here obeys a similar property.

The functional forms of the irreversible fluxes that appear in the moment equations
must be specified, and using even a very simple model for these fluxes yields a
scheme whose performance consistently exceeds that of ensemble forecasts using 100
realizations and can approach that of ensembles using 1000 realizations. The scheme
is comparatively efficient because it evolves only two spatial fields, hence comprising
2N variables rather than MN variables as in the case of ensemble forecasts, or O(N2)
and O(N3) variables as in the case of third- and fourth-order moment closures. A
price for this efficiency is that the representation of forecast uncertainty is incomplete,
consisting of spatial maps of the variances about the mean forecast fields, with no
information about spatial correlations of forecast errors. Our formulation in a spatial
rather than spectral domain (cf. Carnevale & Holloway 1982) is well suited to ocean
models, in which irregular boundaries complicate the use of spectral methods and
flow statistics tend to be spatially inhomogeneous.

In § 2 exact equations governing moment evolution for homogeneous quasi-geostro-
phic flow are formulated. The moment prediction method is developed in § 3 and
discussed in the context of previous work in § 4. In § 5 its performance is compared
to that of ensemble forecasts. Results are summarized and discussed in § 6.

2. Exact moment equations
Consider a representation of the ocean or atmosphere having N degrees of freedom.

The instantaneous state of such a system corresponds to a point in N-dimensional
phase space (x1 . . . xN). In the absence of perfect knowledge of such a state, the system
can be described by the p.d.f. p(x1 . . . xN), and statistical information can be obtained
by evaluating moments with respect to p.

In theory, the evolution of p is described by the Liouville equation (Gleeson 1970),
but in practice this equation cannot be solved due to the large dimensionality of
phase space. Alternatively, we can approximate p as the local density of an ensemble
of M phase-space points, each representing an equally probable state of the system.
The evolution of p can then approximated by evolving the ensemble. However, this
requires updating NM quantities at each time step, which is impractical if N and M
are large.

Alternatively, we consider equations governing ensemble statistics. We focus on the
particular case of ideal unstratified quasi-geostrophic flow on an f-plane, a simple
choice that isolates the inertial dynamics that limit geophysical flow predictability
and has a known equilibrium p.d.f. The evolution of a single realization of potential
vorticity qi is governed by the barotropic potential vorticity equation,

∂qi

∂t
= −J(ψi, qi), (1)

where qi = ∇2ψi + h, ψi is single-realization streamfunction, h = f(H0 − H)/H0 is a
measure of topographic height, where f is Coriolis parameter, H is depth, and H0 is
mean depth, and J(ψi, qi) = |∂(ψi, qi)/∂(x, y)|.
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We consider the evolution of low-order moments of potential vorticity, in particular
the mean

Q1(x, t) =
1

M

M∑
i=1

qi(x, t) ≡ q̄(x, t), (2)

where overbars henceforth denote ensemble averages, and the single-point variance

Q2(x, t) = [q(x, t)− Q1(x, t)]2, (3)

which we adopt as a measure of uncertainty.
To obtain an equation governing Q1, we differentiate (2) with respect to time and

substitute from (1). Writing qi = Q1 + q′i , Ψ + ψ′i where Ψ is mean streamfunction,
we obtain

∂Q1

∂t
= − J(Ψ,Q1)

1A

−J(ψ′, q′)
1B

, (4)

where we have used q′ = ψ′ = 0. Mean Q1 thus evolves according to term 1A de-
scribing advection of Q1 by the mean velocity field, and term 1B that is quadratic in
departures from the mean.

We obtain similarly an evolution equation for Q2 by substituting (1) into the
temporal derivative of (3), which yields

∂Q2

∂t
= − J(Ψ,Q2)

2A

−2q′J(ψ′, Q1)
2B

− J(ψ′, q′2)
2C

. (5)

Term 2A describes advection of Q2 by the mean velocity field. Term 2B is quadratic
in departures from the mean, whereas term 2C is cubic. Uncertainty therefore remains
zero if it vanishes initially.

It is straightforward to show that (4)–(5) conserve Q2
1 +Q2. Integrating (5) and 2Q1

times (4) over space and adding, we have

∂

∂t

∫
(Q2

1 + Q2) dx = −
∫

[J(Ψ,Q2
1 + Q2) + J(ψ′, q′2)

+2Q1J(ψ′, q′) + 2q′J(ψ′, Q1) ] dx = 0, (6)

because the first two terms on the right-hand side of (6) vanish, whereas the third
and fourth terms cancel upon an integration by parts.

3. Moment prediction scheme
Solving moment equations (4)–(5) presents an attractive alternative to computing

M realizations of (1) because statistical forecasts are obtained by evolving two
rather than M spatial fields. However, such an approach presents a closure problem
because the terms involving primed quantities in (4)–(5) are unknown. Formal moment
closures were considered by Epstein (1969) and Fleming (1971) for the evolution of
the mean field plus the full covariance tensor, but these rapidly become intractable
as N becomes large. We consider instead the evolution of the mean Q1 and variance
Q2 in the context of non-equilibrium statistical mechanics.

Central to our approach is the notion that nonlinear evolution according to (3)
drives the p.d.f. p toward higher entropy (greater uncertainty or lower information
content), as demonstrated for homogeneous dynamics by Carnevale, Frisch & Salmon
(1981) and Carnevale & Holloway (1982). From information theory, entropy S is
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related to p by

S = −
∫
p ln p dY , (7)

where Y is a state vector in N-dimensional phase space. Given knowledge of second-
order moments about the mean fields, the p.d.f. that maximizes S is joint-Gaussian,
with

S = 1
2

ln |C |+ 1
2
N(ln 2π+ 1), (8)

where C is the N-dimensional correlation matrix (e.g. Carnevale et al. 1981; Stephen-
son & Doblas-Reyes 2000).

In the present context where we have knowledge of the mean Q1 and of diagonal
elements of C through the spatial variance field Q2, the highest entropy p.d.f. is

p[q(x, t)] =
1

(2πQ2)1/2
exp

[
− (q − Q1)

2

2Q2

]
, (9)

and entropy is given by the integral S =
∫
s dx of entropy density

s(x, t) = −
∫ ∞
−∞
p(q) ln p(q) dq = 1

2
lnQ2(x, t) + 1

2
(ln 2π+ 1). (10)

We seek a prediction scheme for Q1 and Q2 that drives S monotonically toward its
highest attainable value. We also require consistency with the form and conservation
properties of the exact moment equations (4)–(5).

We begin by rewriting the exact moment equations (4)–(5) as

∂Q1

∂t
= − u · ∇Q1

1A′
−∇ · T ∗

1B′
(11)

∂Q2

∂t
= − u · ∇Q2

2A′
− 2T ∗ · ∇Q1

2B′
−∇ · Σ∗

2C′
, (12)

where u = (u, v) = (−Ψy,Ψx) is mean velocity, uQ1 and uQ2 are reversible advective
fluxes, and

T ∗ = u′q′, (13)

Σ∗ = u′q′2, (14)

are irreversible (entropy producing) fluxes, to be specified in terms of Q1 and Q2.
Equations (11)–(12) also can be obtained via statistical mechanical arguments (e.g.
McLennan 1989, Chap. 1).

Terms 1B′ and 2B′ containing irreversible flux T ∗ in (11)–(12) transfer variance
between the mean and the disordered component, and conserve total variance

∫
(Q2

1 +
Q2) dx. In addition, term 2B′ contains gradients of Q1, indicating that uncertainty Q2

tends to be produced most rapidly where such gradients are large. Term 2C′ involving
irreversible flux Σ∗ is conservative and hence redistributes uncertainty.

Following common practice in non-equilibrium thermodynamics, we can relate
these fluxes linearly to gradients that vanish in equilibrium, so that

T ∗ = −η∇(Q1 − Q∗1), Σ∗ = −λ∇(Q1 − Q∗1), (15)

where Q∗1 and Q∗2 are equilibrium fields. Such equilibria can be calculated from
equilibrium statistical mechanics (e.g. Salmon, Holloway & Hendershott 1976), as
discussed further in § 5. For ‘diffusion coefficients’ η and λ in (15), we adopt a simple
mixing-length form consisting of a length scale L times a characteristic velocity
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U ∼ LQ1/2
2 , each associated with the uncertain component of motion. Length scale L

is specified as an eddy length scale of the uncertain component,

L = CL(E/Q)1/2, (16)

where CL is an O(1) constant,

Q =

∫
Q2 dx (17)

is the spatially integrated variance of potential vorticity, and

E =

∫
|∇ψ′|2 dx = E −

∫
|∇Ψ |2 dx (18)

is the energy of the uncertain component, where total mean energy E =
∫ |∇ψ2| dx is

determined from the initial conditions.
The above functional forms for T ∗ and Σ∗ are always finite away from equilibrium.

However, in ensembles having random initial errors, the correlations (13)–(14) initially
vanish and must develop during an adjustment phase that is akin to ‘aging to
hydrodynamics’ in microscopic systems (e.g. McLennan 1989). Information about this
process can be obtained from evolution equations for the correlations. To construct
such an equation for u′q′, we substract (4) from (1) to obtain ∂q′i/∂t and treat similarly
the Euler equation

∂u

∂t
= −u · ∇u− ∇p

ρ
, (19)

where p is pressure and ρ is density, to obtain an equation for ∂u′i/∂t. Multiplying
these expressions by u′i and q′i respectively and ensemble averaging yields

∂

∂t
u′q′ = u′

∂q′

∂t
+ q′

∂u′

∂t

= −ū · ∇(u′q′)− u′(u′ · ∇)Q1 − q′(u′ · ∇)ū− u′ · ∇(u′q′)− q′∇p′
ρ

. (20)

If initial errors are random, all averages on the right-hand side of the bottom line
of (20) vanish except those in the second and fifth terms. (This has been verified
numerically for the explicit ensembles of § 5.) The effect of the fifth term is difficult to
characterize analytically, but numerically we have found that it largely correlates with
the second term and is smaller in magnitude. Therefore we approximate the initial
growth of u′q′ as that due to the second term in (20):

∂

∂t
u′q′ ≈

(
u′2Q1x + u′v′Q1y

u′v′Q1x + v′2Q1y

)
. (21)

If initial velocity errors are directed randomly, u′v′ = 0 and u′2 = v′2 = U/2, where

U ∼ LQ1/2
2 is the characteristic error velocity as defined above. Thus

u′q′ ≡ T ∗ ∼ L2Q2

2
∇Q1t, t . Q−1/2

2 . (22)

We suppose that following initial growth given by (22), T ∗ exponentially converges

to (15) with η = LQ
1/2
2 according to

T ∗ = L2Q
1/2
2 γ∇(Q1 − γQ∗1), (23)
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where

γ(x, t) = 1− exp

[
−
∫ t

0

L2(t′)Q2(x, t) dt′/Q1/2
2 L2

]
. (24)

Application of similar arguments u′q′2 yields

Σ∗ = L2Q
1/2
2 γ∇(Q2 − γQ∗2). (25)

The moment prediction equations then are given by (11)–(12), together with (16)–(18)
and (23)–(25).

We now consider the evolution of entropy implied by these equations. Differentiat-
ing (10) with respect to time and substituting from (12), we have

∂s

∂t
+ u · ∇s = − 1

2Q2

(2T ∗ · ∇Q1 + ∇ · Σ∗). (26)

Substituting forms (23) and (25) for irreversible fluxes T ∗ and Σ∗ and integrating, we
have entropy S(t) =

∫
s(x, t) dx obeying

dS

dt
=

∫
γL2Q

1/2
2

[
1

Q2

(|∇Q1|2 − γ∇Q1 · ∇Q∗1) +
1

2

|∇Q2|2
Q2

2

]
dx, (27)

where we have used ∇Q∗2 = 0 for the quasi-geostrophic systems considered here
(Salmon et al. 1976). Equation (27) implies dS/dt > 0 when Q∗1 = 0, as when topog-
raphy is absent, and in general at early times when γ is small. When Q∗1 is finite, a
sufficient condition for dS/dt > 0 is that total uncertainty Q, which evolves according
to

dQ
dt

=

∫
γL2Q

1/2
2 (|∇Q1|2 − γ∇Q1 · ∇Q∗1) dx, (28)

likewise increases. Such a monotonic increase in Q is anticipated in forecast scenarios
in which observations constrain initial uncertainty, so that Q < Q∗ initially. Although
the universality of such behaviour is not obvious from (28), we were unable to
construct counter-examples, and for all of the forecast scenarios considered here
dS/dt > 0, as reported in § 5.

4. Relation to turbulence closures and subgrid-scale parameterizations
The purpose of the method developed above is to predict evolving ensemble mean

fields and uncertainties about those means. The method is relatively simple in that
it involves quantities only at a single point in space. This is in contrast to the
stochastic dynamic methods mentioned previously, as well as the direct interaction
approximation (DIA) and eddy-damped quasi-normal Markovian (EDQNM) method,
which predict correlations between flow variables at two points in space (e.g. Orszag
1977). Because of their complexity, the latter methods are most often formulated
spectrally for ensembles that are homogeneous and isotropic, implying zero ensemble
mean. Such theories have been considered as bases for subgrid-scale parameterization
in atmospheric circulation models, for which spectral formulations are common
(Frederiksen & Davies 1997). However, we have sought a spatial formulation that has
straight-forward application to the irregular domains encountered in ocean models,
and wish to consider non-zero ensemble means. Application of the DIA or an
EDQNM scheme in such a context is formidably complex compared to the scheme
developed here.
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The approximations (23)–(25) to the irreversible fluxes resemble the BGK or
relaxation-time approximation to the Boltzmann equation (Bhatnagar, Gross & Krook
1954; Chapman & Cowling 1970) in that nonlinear interactions are characterized as
driving relaxation toward equilibrium at typical interaction timescales. In the case
of the BGK approximation, relaxation is toward a Maxwellian p.d.f. characterized
by local values of temperature and bulk velocity, and nearness to local equilibrium
is assumed. In the present case, a purely local formulation is inappropriate because
there exists no scale separation between interacting elements (eddies) and resolved
scales of flow. As formulated here, our prediction equations thus relax local flow
statistics toward global equilibrium values at rates determined by local magnitudes
of uncertainty.

Other single-point schemes have been developed that predict spatial distributions
of potential vorticity. That of Grote & Majda (2000) considers the evolution of single
realizations subject to dissipation and random impulsive forcing. The predictions
consist of sequences of equilibrium states having minumum enstrophy given the
current energy. These equilibria are steady (Carnevale & Frederiksen 1987) and
attract barotropic flows in which small-scale dissipation causes enstrophy but not
energy to decay (Bretherton & Haidvogel 1976).

Another class of methods consists of subgrid-scale parameterizations that predict
large-scale motion in the absence of information about the small scales. In the context
of the barotropic vorticity equation, one such parameterization asserts downgradient
eddy diffusion of q (e.g. Green 1970; Rhines & Young 1982). This approach has
been used recently to predict mean circulation subject to forcing and dissipation in
a flat-bottomed basin (Greatbach & Nadiga 2000). Alternatively, eddies have been
assumed to drive resolved flows toward higher entropy (e.g. Merryfield & Holloway
1997).

Neither the Grote & Majda (2000) scheme nor the subgrid-scale parameterizations
discussed above provide estimates of uncertainty. One subgrid-scale parameterization
that does provide such an estimate is that of Kazantsev, Sommeria & Verron (1998,
referred to herein as KSV). The KSV scheme specifies subgrid-scale eddy fluxes by
maximizing the local rate of entropy production. The scheme can be formulated
to predict first and second moments, much as here. However, there are at least
two differences between the KSV scheme and the moment equations formulated in
§ 3. First, the KSV scheme restricts fluctuations to unresolved scales that have little
energy, so that resolved mean-flow energy is conserved in the absence of forcing
and dissipation. This energy conservation principle appears as a constraint in the
variational problem (KSV, eq. (3.13)) that determines the eddy fluxes. In the prediction
scenario considered here, however, fluctuations occur at all scales, and mean-flow
energy hence is not conserved. (In instances where Q∗1 = 0, for example, mean-flow
energy eventually vanishes.) Relaxing the energy conservation constraint in the KSV
formulation removes terms containing the corresponding Lagrange multiplier b from
KSV’s moment equations (3.21)–(3.22). The remaining terms resemble our equations
(11)–(12), (23) and (25) except that the irreversible terms now drive the moments
toward uniformity rather than equilibria, the equilibration tendency having been lost
in the removal of terms proportional to b.

A second difference between KSV and the present scheme is that the KSV diffusion
coefficient AE is simply proportional to local uncertainty (KSV, eq. (3.19)). The initial
adjustment period over which correlations (13)–(14) develop thus is not accounted
for, as it is here in equations (23)–(25). This adjustment plays a significant role in the
early evolution of ensembles, as we demonstrate below.
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Figure 1. Topography for cases A, C and E. Solid contours denote regions shallower than the
mean depth of 5000 m, and dashed contours regions that are deeper. Contour interval is 100 m.

5. Numerical tests
The skill of the prediction scheme developed in § 3 is now assessed in numerical tests.

Forecast skill is compared to that of explicit ensemble solutions to (1) containing from
1 to 103 realizations. Estimates of ‘true’ moment evolution are provided by ensembles
containing 104 realizations.

The system that we consider is intended as a simple model of an oceanic eddy
field. It consists of a doubly periodic f-plane 1280 km on a side, overlying randomly
generated topography (figure 1). Ensemble initial conditions are obtained by selecting
a particular random velocity field, to which are added different random perturbations
for each realization. The initial r.m.s. velocity in individual realizations is 10 cm s−1.
Initial values of Q1 and Q2 are obtained by evaluating (2)–(3) for the 104 member
ensembles. Details of the numerical scheme are summarized in the Appendix.

Moment prediction equations (11)–(12), (16)–(18) and (23)–(25) require specification
of equilibrium moment fields Q∗1 and Q∗2. According to Salmon et al. (1976), for the
simple quasi-geostrophic systems considered here Q∗1 and Q∗2 are given by(

1− b

a
∇2

)
Q∗1 = h, Q∗2 = [q(x)q(x′)]∗x′=x, (29)

where

(b− a∇−2)[q(x)q(x′)]∗ = δ(x− x′) (30)

(Salmon 1982). In (29)–(30), a and b are Lagrange multipliers that depend on the
energy and potential enstrophy of the individual realizations as described in Carnevale
& Frederiksen (1987). Values for a and b obtained via Newton–Raphson iteration are
listed in table 1.

The equilibria described by (29)–(30) apply to inviscid quasi-geostrophic systems
in which the equation of motion is truncated at some finite cutoff wavenumber, and
depend on the cutoff wavenumber selected. These equilibria describe the long-time
statistics of ensembles of numerical solutions to (1), in which a cutoff is necessarily
employed (Merryfield & Holloway 1996). This choice of equilibrium is appropriate
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Case Grid resolution (H0 −H)r.m.s. Initial error a b
(km) (m) specification (s2 cm−2) (s2)

A 20 210 (A1), kc = 15kf 3.03 7.10× 1013

B 10 210 (A1), kc = 15kf 4.66 1.96× 1014

C 20 210 (A2) 3.14 6.34× 1013

D 20 0 (A1), kc = 15kf −0.20 1.30× 1014

E 20 210 (A1), kc = 60kf 3.81 7.11× 1013

Table 1. Summary of cases A–E.

in the present study, in which we predict statistics of solutions to (1) given imperfect
knowledge of initial conditions.

We proceed to describe five sets of experiments, summarized in table 1, in which we
compare eight-month forecasts obtained from the moment equations of § 3 and from
ensembles. Case A, the central experiment, uses a 20 km grid and has initial errors
concentrated on small spatial scales. In case B the grid spacing is halved to 10 km.
In case C the initial relative error is independent of scale, and in case D topographic
variation is absent. In case E the magnitude of initial errors is much smaller than in
the other cases.

5.1. Case A: central experiment

In this subsection, we first examine the ‘true’ evolution of Q1 and Q2 as deduced from
an M = 104 ensemble. We then evaluate the performance of the moment prediction
scheme, first by considering the ability of the irreversible terms in (11)–(12) to represent
corresponding terms in the exact moment equations (4)–(5), and then by comparing
the ‘true’ Q1 and Q2 with forecasts obtained from the moment equations (11)–(12)
and from various sizes of sub-ensembles.

5.1.1. ‘True’ moment evolution

The left-hand panels of figure 2 show ‘true’ Q1(x, t) deduced from an M = 104

ensemble. Evolution is from an initial state uncorrelated with the equilibrium mean
Ψ ∗ (figure 2a), toward Ψ ∗ (figure 2c, e, g). The corresponding decay of Ψ − Ψ ∗ is
illustrated in the right-hand panels of figure 2.

Figure 3 shows the evolution of uncertainty Q2(x, t) as deduced from an M = 104

ensemble using (3). Because of the manner in which the initial error field is specified,
Q2 is initially uniform except for statistical noise (figure 3a). As the ensemble evolves,
Q2 develops strong intermittent peaks (figure 3b), much as in experiments of Lilly
(1972) and Baumhefner & Julian (1972) involving two-member ensembles. These
peaks broaden and disperse as overall uncertainty increases (figure 3c). Finally, Q2

approaches its equilibrium form (figure 3d ), which in this case is uniform (Salmon et
al. 1976).

5.1.2. Skill of irreversible terms in moment equations

In evaluating the performance of the moment prediction scheme for case A,
we consider first the ability of the irreversible flux terms in (11)–(12) to represent
corresponding terms in the exact moment equations (4)–(5). We evaluate both sets
of terms from the M = 104 ensemble. Figure 4 compares grid-point values of exact
term 1B (horizontal axis) and its parameterization 1B′ with CL = 0.4 (vertical axis),
which drive Q1 toward its equilibrium form. A perfect parameterization would place
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Figure 2 (a–d). For caption see facing page.

all points on the dashed lines having unit slope. At t = 0.5 months (figure 4a), explicit
1B and parameterization 1B′ are strongly linearly correlated with approximately
correct slope. At t = 2 months (figure 4b) the correlation remains strong, with 1B′
underestimating slightly the magnitude of 1B. At t = 8 months (figure 4c), the
temporal evolution of Q1 has largely ceased (figure 2g, h), and the relation between
1B and 1B′ is dominated by statistical noise.

Figure 5 compares explicitly evaluated 2B in (5) with its parameterization 2B′ in
(12). These terms irreversibly generate net uncertainty

∫
Q2 dx. At t = 0.5 months

(figure 5a), explicit 2B and its parameterization are strongly linearly correlated, with
2B′ tending to overestimate slightly the rate of uncertainty production. At t = 2
months (figure 5b) the correlation remains strong, with a slight tendency toward
underestimation. At t = 8 months (figure 5c), uncertainty production has nearly
ceased (figure 3d ), and any relation between 2B and 2B′ is obscured by statistical
noise.

Figure 6 similarly compares explicitly evaluated 2C in (5) with its parameterization
2C′ in (12). These terms drive Q2 toward spatially uniform Q∗2. At t = 0.5 months
2C and 2C′ are strongly correlated with approximately the correct slope. At t = 2
months the correlation has decayed somewhat, but the slope remains approximately
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Figure 2. ‘True’ mean potential vorticity Q1 (left-hand panels) and departures from equilibrium
Q1−Q∗1 (right-hand panels) for case A, as determined from an M = 104 ensemble. (a, b) t = 0; (c, d )
t = 0.5 months; (e, f ) t = 2 months; and (g, h) t = 8 months. Contour interval is 1.76× 10−6 s−1 in
panels (a–g) 0.44× 10−6 s−1 in panel (h).

correct. After 8 months (figure 6c) Q2 is nearly featureless (figure 3d ), and the relation
between 2C and 2C′ is dominated by noise.

These results indicate that the irreversible flux terms in (11)–(12) represent the
unknown terms in exact moment equations (4)–(5) with significant skill.

5.1.3. Skill of moment forecasts

The skill of moment prediction equations (11)–(12) in forecasting Q1 and Q2 is
now compared to that of ensembles containing from M = 1 to 103 realizations, using
an M = 104 ensemble as the ‘truth’. The example in figure 7 shows mean Q1 (thick

curves) and confidence limits Q1±Q1/2
2 (shaded intervals) for y = 1040 km and t = 0.5

months.

Because the moments evolve toward equilibrium fields Q∗1 and Q∗2, we evaluate the
skill in predicting departures from equilibrium. Two skill measures are employed. The
first, ΣM , measures accuracy in predicting the magnitude of these departures Qn −Q∗n
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Figure 3. Square root Q
1/2
2 of the ‘true’ uncertainty field for case A. (a) t = 0; (b) t = 0.5 months;

(c) t = 2 months; (d ) t = 8 months.

(n = 1, 2), and consists of the ratio of forecast to ‘true’ r.m.s. Qn − Q∗n:

ΣM =


∫

forecast (Qn − Q∗n)2 dx∫
true (Qn − Q∗n)2 dx


1/2

. (31)

The second skill measure ΣP gauges accuracy in predicting the spatial pattern of
Qn − Q∗n, and consists of the spatial correlation coefficient of forecast and ‘true’
Qn − Q∗n:

ΣP =

∫
[forecast (Qn − Q∗n)][true (Qn − Q∗n)] dx[∫

forecast (Qn − Q∗n)2 dx

]1/2 [∫
true (Qn − Q∗n)2 dx

]1/2
. (32)

A perfect forecast yields unit values in both cases.
Figure 8 illustrates the evolution of ΣM and ΣP for Q1−Q∗1 and Q2−Q∗2. Heavy solid
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months. The dashed lines indicate unit slope.
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curves represent a moment equation forecast having CL = 0.4. For comparison, the
thin solid curves represent a moment equation forecast having CL = 0.5. The dashed
curves, from thickest to thinnest, represent ensemble forecasts having M = 103, 102, 10
and 1. Unit values produced by perfect forecasts are indicated by the dotted lines.

According to figure 8(a), r.m.s. Q1−Q∗1 from the moment equation forecast remains
within 50% or so of its true value for the duration of the forecast. By contrast, the
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Figure 7. Mean potential vorticity Q1 (thick curves) and confidence interval Q1 ± Q1/2
2 (shaded

intervals) at y = 1040 km, t = 0.5 months, for (a) M = 104 ‘truth’; (b) M = 10 ensemble;
(c) moment forecast with CL = 0.4.

ensemble forecasts overestimate r.m.s. Q1−Q∗1 with increasing severity as the ensemble
size decreases. This is attributable in part to random statistical errors associated with
finite ensemble size, which scale as M−1/2.

Figure 8(b) shows that the spatial structure of Q1−Q∗1 as predicted by the moment
equation forecast is highly correlated with true Q1−Q∗1 during the entire eight months.
Skill measure ΣP meets or exceeds that of ensembles having M 6 102, and exceeds
that of the M = 103 ensemble during the latter half of the forecast.

The skill in predictng r.m.s. Q2 − Q∗2 is shown in figure 8(c). For t & 1 month, the
moment equation forecast overestimates r.m.s. Q2 − Q∗2 by as much as a factor of
four. However, ensembles having M 6 102 fare even worse, and error in the M = 103

ensemble has grown nearly to this level by the end of the forecast. As for Q1 − Q∗1,
ensemble forecast errors are at least partially attributable to random statistical errrors
that prevent Qn − Q∗n from decaying to realistic levels.
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Figure 9. Evolution of skill in forecasting departures Ψ −Ψ* from equilibrium for case A. The
meaning of the different curves is as in figure 8.

Figure 8(d ) shows the skill in predicting the spatial structure of Q2 −Q∗2, including
the intermittent peaks in uncertainty seen in figure 3(b, c). The moment equation skill
exceeds that of the M 6 102 ensemble throughout much of the forecast.

In applying skill measures ΣM and ΣP to moments of the potential vorticity field, we
measure primarily prediction skill for the small scales over which q characteristically
varies (e.g. figure 2). Prediction skill for larger scales is assessed by applying ΣM and
ΣP to departures from equilibrium Ψ −Ψ ∗ of the mean streamfunction. The skill ΣM
in predicting r.m.s. Ψ−Ψ ∗, shown in figure 9(a), is comparable to that of the M = 102

ensemble. The skill ΣP in predicting the spatial structure of Ψ − Ψ ∗ is comparable
to that of the M = 102 ensemble only over the latter half of the forecast (figure 9b),
although a prediction for which CL = 0.5 (thin curve) fares somewhat better.



206 W. J. Merryfield and G. Holloway

5

4

3

2

1

(c)

Q
2–

Q
* 2

0 2 4 6 8
t (months)

1.0

0.8

0.6

0.4

0.2

(d )

0 2 4 6 8
t (months)

2.5

2.0

1.5

1.0

0.5

(a)

Q
1–

Q
* 1

0 2 4 6 8

1.0

0.8

0.6

0.4

0.2

(b)

0 2 4 6 8

ΣM ΣP

Figure 10. As for figure 8, but for high-resolution case B.

Overall, the skill of the moment equation forecast compares favourably with that
of ensembles having M 6 102. By some measures, the skill exceeds even that of the
M = 103 ensemble late in the forecast.

5.2. Case B: increased resolution

Case B is similar to case A, except that spatial resolution is doubled. The performance
in representing the magnitudes of Qn−Q∗n (left-hand panels in figure 10) is comparable
to that of the M = 102 ensemble at early times, and to that of the M = 103 ensemble
at later times.

The skill of the moment equations in predicting the spatial structure of Q1 − Q∗1
lies between that of the M = 102 and M = 103 ensembles (figure 10b), and the
skill in predicting spatial variations in uncertainty (figure 10d ) is comparable, with
correlation coefficient ΣP exceeding 0.8 early in the forecast.

Overall, moment equation forecast skill exceeds that of an M 6 102 ensemble and
rivals that of an M = 103 ensemble.

5.3. Case C: scale-independent initial relative error

To test the generality of (11)–(12) we consider case C in which r.m.s. uncertainty

in the initial fields is the same as in case A, but relative error Q
1/2
2 /Q1 is initially

indepedent of spatial scale instead of concentrated at small sacles. In this case, the
skill ΣM in predicting the magnitudes of Qn − Q∗n is generally comparable to case A
(figure 11a, c) except during the first month or so. The skill ΣP in predicting spatial
patterns is weaker than in case A for Q1−Q∗1 (figure 11b), but is stronger for Q2−Q∗2
(figure 11d ).

Except during the first month, the overall moment forecast skill exceeds that of the
M = 102 ensemble, and in some respects rivals that of the M = 103 ensemble.
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Figure 11. As for figure 8, but for case C having scale-independent relative initial error.
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Figure 12. As for figure 8, but for no-topography case D.

5.4. Case D: no topography

Case D is identical to case A, except that topography is absent. In case D, the moment
equation forecast systematically underestimates the decay of Q1−Q∗1, as indicated by
increasing ΣM in figure 12(a). However, the spatial pattern of Q1 − Q∗1 is predicted
with considerable skill (figure 12b).

The skill in predicting the magnitude of Q2−Q∗2 (figure 12c) and its spatial pattern
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Figure 13. As for figure 8, but for small initial error case E.

(figure 12d ) lies between that of M = 102 and M = 103 ensembles, and slightly
exceeds that in case A.

5.5. Case E: small initial errors

Case E is similar to case A except that initial uncertainty is much smaller. This is
accomplished by increasing the characteristic wavenumber kc in the error spectrum
from 15kf to 60kf (see Appendix). In this case, prediction of Q1 − Q∗1 is good at
early times t . 1 month (as it is for ensembles) because the errors have not grown
large enough to significantly affect evolution of the mean (figure 13). At intermediate
times (1 month . t . 3 months), the moment prediction is less skillful, faring at best
as well as the M = 10 ensemble. At later times, skill measures lie between those of
the M = 102 and the M = 103 ensemble.

Because initial uncertainty in case E is so small, the initial development of cor-
relations (13)–(14) described by (24) is expected to play an especially significant
role. Figure 14 shows the evolution of integrated uncertainty Q =

∫
Q2 dx for case

A (figure 14a) and for case E (figure 14b). Here ‘true’ Q is denoted by the solid
curves and predicted Q by the dashed curves. To test sensitivity to our description
(24) of correlation growth, we repeated the predictions replacing γ with unity in (23)
and (25), in effect assuming that the development of correlations is instantaneous.
These predictions are denoted by the dotted curves. In case A where initial errors are
comparatively large, the initial adjustment is relatively rapid and the two predictions
do not differ substantially (figure 14a). Nonetheless, the prediction that employs (24)
succeeds in forecasting the relatively slow initial rate of error growth, whereas the
prediction that neglects the adjustment process forecasts initial error growth that is
too rapid. This effect is more dramatic in case E where initial errors are very small:
here true error growth is almost nil until t & 1 month (figure 14b). The prediction
that employs (24) succeeds in forecasting this behaviour, and provides reasonable
estimates of Q throughout the forecast. However, the prediction that neglects the
adjustment process fails to predict the slow initial error growth.
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5.6. Evolution of L and S

Figure 15 shows the evolution of eddy length scale L of the uncertain component,
which appears in (23)–(25). In case A (solid curve), L increases from less than 6 km
at t = 0 to 7.5 km at t = 8 months. The relatively small initial value of L is consistent
with the initial concentration of the uncertain component on small scales. In case
B, L is smaller than in case A, reflecting the finer resolution of case B. In case C,
L is initially larger than in case A, reflecting the presence of initial uncertainty at
large as well as small scales. In case D, L initially is the same as in case A because
initial conditions are similar. However, at later times L exceeds that in case A because
equilibrium uncertainty in case D is concentrated at larger spatial scales.

Figure 16 shows the monotonic increase of entropy S for moment equation forecasts
A–E. Entropy in case B is larger than in case A, in part because of the greater number
of degrees of freedom. In case C, initial S is comparable to that in case A but grows
more rapidly, apparently because the initial presence of uncertainty on large scales
accelerates error growth relative to cases in which initial uncertainty is concentrated
on small scales. Entropy in case D initially is the same as in case A, but grows toward
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Figure 16. Evolution of entropy S according to moment equation forecasts with CL = 0.4, for cases
A–E. For high-resolution case B, S/4 is plotted so that each curve is proportional to entropy per
degree of freedom.

a smaller equilibrium value. Entropy in case E is initially much lower than in the
other cases due to the very small initial uncertainty.

6. Summary and discussion
Guided by non-equilibrium statistical mechanics, we predict the statistical evolution

of inviscid quasi-geostrophic turbulence. Our method operates in the spatial domain
and forecasts the first moment or mean Q1 of potential vorticity, and the diagonal
of the second moment or variance Q2 about the mean. Thus we predict uncertainty
and the feedback of the uncertain component upon the mean without performing
ensemble forecasts. The method also represents the entropy gain or information loss
that occurs as moments evolve from observationally constrained initial conditions.

Moment evolution equations that are consistent with exact moment equations (4)–
(5) are obtained in terms of reversible (advective) and irreversible (entropy producing)
fluxes. The irreversible fluxes are specified in terms of known moments, where we
consider a simple specification based on mixing-length arguments and an approxi-
mate description of initial correlation growth. Using even this simple form, moment
equation forecasts outperformed M = 102 ensemble forecasts and sometimes rivalled
M = 103 ensembles in a range of numerical examples. Because the moment equations
evolve just two spatial fields versus M spatial fields for ensembles, this performance
is achieved at greatly reduced computational cost.

This paper focuses on the idealized case of inviscid unstratified quasi-geostrophic
turbulence, and a challenge will be to apply this approach in a more realistic con-
text. Real oceans and atmosphere are subject to forcing and dissipation, and terms
representing these effects will arise in moment equations. As well, our moment fore-
cast scheme requires specification of maximum entropy fields Q∗n or approximations
thereof. Progress in achieving more realistic Q∗n is reported by Merryfield (1998) for
stratified quasigeostrophic flows, and by Merryfield, Cummins & Holloway (2001)
for unstratified flows, over finite topography. The moment prediction scheme in more
realistic cases may also incorporate a spatially varying uncertain-component eddy
length scale L, as well as anisotropic irreversible fluxes T and Σ, especially where
coastlines and steep topography constrain circulation.

This work was supported by the Office of Naval Research (N00014-99-1-0050).
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Appendix. Details of numerical computations
In the case of ensemble calculations, equation (1) for each realization i was in-

tegrated using a pseudospectral scheme (e.g. Canuto et al. 1988), dealiased by the
2/3 rule. Temporal integration was via a leapfrog scheme, stablized by a Robert
filter. Topography h was constructed by drawing complex spectral coefficients from
a bi-normal distribution and scaling by k−1/2(k + 4kf)

−5/4, where k is wavenumber
and kf = 2π/1280 km is the fundamental wavenumber. Initial relative vorticities ∇2ψi,
i = 1 . . .M, consisted of a mean component ∇2Ψ0 and error components ∇2ψ′i0. The
mean ∇2Ψ0 was specified by again drawing Fourier coefficients from a bi-normal
distribution, in this instance scaling by k3/2(k + 5kf)

−3. In all instances except case C,
errors ∇2ψ′i0 were obtained by generating additional random realizations ∇2ψi using
the same scheme, and setting

(∇2ψ′i0)k = [(∇2ψi)k − (∇2Ψ0)k]F(k), (A 1)

with F(k) = ∆+ (1−∆)(1− e(−k/kc)2

), where ∆ is a numerical constant set to 10−2, and
kc = 15kf (cases A, B and D) or kc = 60kf (case E). Prescription (A1) concentrates
initial error at small spatial scales (k & kc). In case C, we alternatively prescribe equal
relative initial error on all spatial scales,

(∇2ψ′i0)k = [(∇2ψi)k]− (∇2Ψ0)k]∆
′, (A 2)

with ∆′ = 0.473, which gives case C the same initial error variance as cases A, B and
D.

Moment forecast equations (11)–(12), (16)–(18) and (23)–(25) also were solved
pseudospectrally, with initial conditions for Q1 and Q2 computed via (2)–(3) from
‘true’ M = 104 ensemble initial conditions.
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